
Question 2
Please indicate the correct choice by returning the appropriate char [] array from the
corresponding method in the ToughChoices class!

For example, the following means the answer to the first MCQ is a and c , whereas the answer
to the second question is b .

public static char q1() {
 return new char[] {'a', 'c'};
}

public static char q2() {
 return new char[] {'b'};
}

Multiple-Choice Questions
1. Linked lists are not suitable for the implementation of

a. Insertion sort
b. Linear search
c. Bubble sort
d. Binary search

2. Where should you orient the front of a Stack if it is being implemented with a singly linked
list with a head reference and optional tail reference so that all operations are constant
time?

a. at the head
b. at the tail
c. either one
d. it cannot be done

3. Expand and simplify (if possible), then determine the big-Oh asymptotic complexity for

a.

b.

c.
d. other

f(n) = 13 + 4 logn+
2n

18n + n logn2

O(logn)
O(n)
O(n logn)

4. Expand and simplify (if possible), then determine the big-Oh asymptotic complexity for

a.

b.

c.
d. other

5. Suppose we have the following array contents after the third pass of the outer loop of some
quadratic sorting algorithm meant to put the array in ascending order: [3, 5, 7, 4, 2,
9, 8, 10, 15, 20] . Which sorting algorithm could be operating on this array?

a. bubble (up) sort
b. (min) selection sort
c. insertion sort
d. none of these

6. Consider these two methods that calculate the same function of n :

public static double func1(int n) {
 if (n >= 1) {
 return 2 * func1(n - 1);
 }
 else return 1.0;
}

 public static double func2(int n) {
 double result = 1.0;
 for (int i = 1; i <= n; i++) {
 result = result * 2;
 }
 return result;
 }

Which of the following statements are true?

a. func2 has input space complexity

b. func1 has auxiliary space complexity

c. func2 has input space complexity

d. func1 has time complexity

f(n) = n log(n) +2 3n(n+ 1)

O(n)2

O(n)
O(n logn)

O(1)
O(1)
O(n)
O(n)

